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1. Introduction

The results of the previous paper were obtained under the restriction that both
the basis functions and the matrix elements H, , and S, , are real. Since in practical
applications cases occur where these quantities may be complex, we give here the
generalized results!. The restriction H;; < H,, is also dropped.

2. Secular Problem with Orthogonal Basis

The trigonometric form of the two solutions now reads

p_=cosf- @, —ssinf- g, (6a)
p, =sinf- @, +scosb- @, (6b)
with s =exp(—ih), h=arg H;,. The angle 6 is obtained from
Csin20=|H,,| (7a)
Ccos20=(H,,— H,,)/2 (7b)

Egs. (7¢) for C and (8) for the energy remain unchanged.

(a) The basis functions ¢;and H, , can be complex; both cases H,; < H,, will
be treated on the same footing.

(b) 6 is real and always positive. For H,, real s = sign H,, and the statement
about the relative signs of ¢, and ¢, remains correct.

(c) For mnondegenerate states (H;,# H,,) 0<0< % for H,;<H,, and

% <0< % for Hy, > H,,. For degenerate states (H,;, = H,,) §=45° and both

solutions are 50-50 mixtures:
. =2"%@,s5¢,), Ei;=H,,*|H,|.

! Equation numbers are the same as in the previous paper.
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3. Secular Problem with Non-Orthogonal Basis

By using the orthogonalized function

@3 =(0s—S1,0,)/(1 — lSlzIZ)%
=(p, —cosae’p,)/sina

instead of ¢, in the equations of Section 2 and rewriting the results in terms of the
nonorthogonal basis one obtains

sino - w_ = (sina cosf + cosa sinf e Mg, —sinf- e "p, (6a")

sino -, =(sina sinf — cosa cos 0 "M, +cosh-e g, (6b")
where
[S{2] =cosa,o=argS,,.

The angle 6 is now determined from
Csin20=sina- [H,; cosa— |Hy,|e® 9| (7a")
C cos20=cosa - (H,, cosa — |H,,|cos (h— o))+ 3(H,, ~ H,,) (70

C={sin’*«|H,, cosa— |H;,|e® 9|2
+((Hy, — Hy1)/2 + H,y sin® a— |Hy; S| cos (h— o))}
The two energies are then given by

E, =[YH,, + H,,)—|H,,|cosxcos(h— g)+ C]/sina. 8)

(a’) Since [S;,|="cosa =0 we will have 0 <a < %

(b') 6 is real and always positive.

(c) 0 liesin therange 0 < 6 <45°. For the nondegenerate case the contributions
of ¢, and ¢, toy, and y_ are given by the trigonometric ratios in Egs. (6a’, b'). For
the degenerate case (H,; = H,,) a marked simplification of the equations occurs
only for H,, and S, real, which is given in the previous paper.
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