Annotatio

Note on the Solution of Secular Problems with Two Non-Orthogonal Basis Functions

Theor. Chim. Acta (Berl.) 25, 196 (1972)

W. A. Bingel

Theoretical Chemistry Group, University of Göttingen, Germany

Received May 17, 1974

1. Introduction

The results of the previous paper were obtained under the restriction that both the basis functions and the matrix elements H_{12} and S_{12} are real. Since in practical applications cases occur where these quantities may be complex, we give here the generalized results¹. The restriction $H_{11} \leq H_{22}$ is also dropped.

2. Secular Problem with Orthogonal Basis

The trigonometric form of the two solutions now reads

$$\psi_{-} = \cos\theta \cdot \varphi_{1} - s\sin\theta \cdot \varphi_{2} \tag{6a}$$

$$\psi_{+} = \sin\theta \cdot \varphi_{1} + s\cos\theta \cdot \varphi_{2} \tag{6b}$$

with $s = \exp(-i\hbar)$, $h = \arg H_{12}$. The angle θ is obtained from

$$C\sin 2\theta = |H_{12}| \tag{7a}$$

$$C\cos 2\theta = (H_{22} - H_{11})/2 \tag{7b}$$

Eqs. (7c) for C and (8) for the energy remain unchanged.

(a) The basis functions φ_i and H_{12} can be complex; both cases $H_{11} \leq H_{22}$ will be treated on the same footing.

(b) θ is real and always positive. For H_{12} real $s = \text{sign } H_{12}$ and the statement about the relative signs of φ_1 and φ_2 remains correct.

(c) For nondegenerate states $(H_{11} \neq H_{22}) \quad 0 < \theta < \frac{\pi}{4}$ for $H_{11} < H_{22}$ and

 $\frac{\pi}{4} < \theta < \frac{\pi}{2}$ for $H_{11} > H_{22}$. For degenerate states $(H_{11} = H_{22}) \theta = 45^{\circ}$ and both solutions are 50-50 mixtures:

$$\psi_{\pm} = 2^{-\frac{1}{2}}(\varphi_1 \pm s\varphi_2), \quad E_{\pm} = H_{11} \pm |H_{12}|.$$

¹ Equation numbers are the same as in the previous paper.

3. Secular Problem with Non-Orthogonal Basis

By using the orthogonalized function

$$\varphi_{2}^{\perp} = (\varphi_{2} - S_{12}\varphi_{1})/(1 - |S_{12}|^{2})^{\frac{1}{2}}$$
$$= (\varphi_{2} - \cos\alpha e^{i\sigma}\varphi_{1})/\sin\alpha$$

instead of φ_2 in the equations of Section 2 and rewriting the results in terms of the nonorthogonal basis one obtains

$$\sin\alpha \cdot \psi_{-} = (\sin\alpha\cos\theta + \cos\alpha\sin\theta e^{i(\sigma-h)})\varphi_{1} - \sin\theta \cdot e^{-ih}\varphi_{2}$$
(6a')

$$\sin\alpha \cdot \psi_{+} = (\sin\alpha \sin\theta - \cos\alpha \cos\theta e^{i(\sigma-h)})\varphi_{1} + \cos\theta \cdot e^{-ih}\varphi_{2}$$
(6b')

where

$$|S_{12}| = \cos \alpha$$
, $\sigma = \arg S_{12}$.

The angle θ is now determined from

$$C\sin 2\theta = \sin \alpha \cdot |H_{11}\cos \alpha - |H_{12}|e^{i(h-\sigma)}|$$
(7a')

$$C\cos 2\theta = \cos\alpha \cdot (H_{11}\cos\alpha - |H_{12}|\cos(h-\sigma)) + \frac{1}{2}(H_{12} - H_{11})$$
(7b')
$$C = \{\sin^2\alpha | H_{11}\cos\alpha - |H_{12}|e^{i(h-\sigma)}|^2$$

+
$$((H_{22} - H_{11})/2 + H_{11} \sin^2 \alpha - |H_{12}S_{12}| \cos (h - \sigma))^2 \}^{\frac{1}{2}}$$

The two energies are then given by

$$E_{\pm} = \left[\frac{1}{2}(H_{11} + H_{22}) - |H_{12}|\cos\alpha\cos(h - \sigma) \pm C\right] / \sin^2\alpha.$$
 (8)

(a') Since $|S_{12}| = \cos \alpha \ge 0$ we will have $0 < \alpha \le \frac{\pi}{2}$.

(b') θ is real and always positive.

(c') θ lies in the range $0 \leq \theta \leq 45^{\circ}$. For the *nondegenerate* case the contributions of φ_1 and φ_2 to ψ_+ and ψ_- are given by the trigonometric ratios in Eqs. (6a', b'). For the *degenerate* case ($H_{11} = H_{22}$) a marked simplification of the equations occurs only for H_{12} and S_{12} real, which is given in the previous paper.

Prof. Dr. W. A. Bingel Lehrstuhl für Theoretische Chemie der Universität Göttingen D-3400 Göttingen Tammannstr. 6 Federal Republic of Germany